A Real-time Anomaly Detection Using Convolutional Autoencoder with Dynamic Threshold

5 Apr 2024  ·  Sarit Maitra, Sukanya Kundu, Aishwarya Shankar ·

The majority of modern consumer-level energy is generated by real-time smart metering systems. These frequently contain anomalies, which prevent reliable estimates of the series' evolution. This work introduces a hybrid modeling approach combining statistics and a Convolutional Autoencoder with a dynamic threshold. The threshold is determined based on Mahalanobis distance and moving averages. It has been tested using real-life energy consumption data collected from smart metering systems. The solution includes a real-time, meter-level anomaly detection system that connects to an advanced monitoring system. This makes a substantial contribution by detecting unusual data movements and delivering an early warning. Early detection and subsequent troubleshooting can financially benefit organizations and consumers and prevent disasters from occurring.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods