A Risk-Driven Probabilistic Approach to Quantify Resilience in Power Distribution Systems

25 Mar 2022  ·  Abodh Poudyal, Anamika Dubey, Shiva Poudel ·

It is of growing concern to ensure resilience in power distribution systems to extreme weather events. However, there are no clear methodologies or metrics available for resilience assessment that allows system planners to assess the impact of appropriate planning measures and new operational procedures for resilience enhancement. In this paper, we propose a resilience metric using parameters that define system attributes and performance. To represent extreme events (tail probability), the conditional value-at-risk of each of the parameters are combined using Choquet Integral to evaluate the overall resilience. The effectiveness of the proposed resilience metric is studied within the simulation-based framework under extreme weather scenarios with the help of a modified IEEE 123-bus system. With the proposed framework, system operators will have additional flexibility to prioritize one investment over the others to enhance the resilience of the grid.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here