A Semi-Parametric Model for Decision Making in High-Dimensional Sensory Discrimination Tasks

2 Feb 2023  ·  Stephen Keeley, Benjamin Letham, Chase Tymms, Craig Sanders, Michael Shvartsman ·

Psychometric functions typically characterize binary sensory decisions along a single stimulus dimension. However, real-life sensory tasks vary along a greater variety of dimensions (e.g. color, contrast and luminance for visual stimuli). Approaches to characterizing high-dimensional sensory spaces either require strong parametric assumptions about these additional contextual dimensions, or fail to leverage known properties of classical psychometric curves. We overcome both limitations by introducing a semi-parametric model of sensory discrimination that applies traditional psychophysical models along a stimulus intensity dimension, but puts Gaussian process (GP) priors on the parameters of these models with respect to the remaining dimensions. By combining the flexibility of the GP with the deep literature on parametric psychophysics, our semi-parametric models achieve good performance with much less data than baselines on both synthetic and real-world high-dimensional psychophysics datasets. We additionally show strong performance in a Bayesian active learning setting, and present a novel active learning paradigm for the semi-parametric model.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods