A State Augmentation based approach to Reinforcement Learning from Human Preferences

17 Feb 2023  ·  Mudit Verma, Subbarao Kambhampati ·

Reinforcement Learning has suffered from poor reward specification, and issues for reward hacking even in simple enough domains. Preference Based Reinforcement Learning attempts to solve the issue by utilizing binary feedbacks on queried trajectory pairs by a human in the loop indicating their preferences about the agent's behavior to learn a reward model. In this work, we present a state augmentation technique that allows the agent's reward model to be robust and follow an invariance consistency that significantly improved performance, i.e. the reward recovery and subsequent return computed using the learned policy over our baseline PEBBLE. We validate our method on three domains, Mountain Car, a locomotion task of Quadruped-Walk, and a robotic manipulation task of Sweep-Into, and find that using the proposed augmentation the agent not only benefits in the overall performance but does so, quite early in the agent's training phase.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here