ABACUS: Unsupervised Multivariate Change Detection via Bayesian Source Separation

15 Oct 2018  ·  Wenyu Zhang, Daniel Gilbert, David Matteson ·

Change detection involves segmenting sequential data such that observations in the same segment share some desired properties. Multivariate change detection continues to be a challenging problem due to the variety of ways change points can be correlated across channels and the potentially poor signal-to-noise ratio on individual channels. In this paper, we are interested in locating additive outliers (AO) and level shifts (LS) in the unsupervised setting. We propose ABACUS, Automatic BAyesian Changepoints Under Sparsity, a Bayesian source separation technique to recover latent signals while also detecting changes in model parameters. Multi-level sparsity achieves both dimension reduction and modeling of signal changes. We show ABACUS has competitive or superior performance in simulation studies against state-of-the-art change detection methods and established latent variable models. We also illustrate ABACUS on two real application, modeling genomic profiles and analyzing household electricity consumption.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here