AdaFocal: Calibration-aware Adaptive Focal Loss

21 Nov 2022  ·  Arindam Ghosh, Thomas Schaaf, Matthew R. Gormley ·

Much recent work has been devoted to the problem of ensuring that a neural network's confidence scores match the true probability of being correct, i.e. the calibration problem. Of note, it was found that training with focal loss leads to better calibration than cross-entropy while achieving similar level of accuracy \cite{mukhoti2020}. This success stems from focal loss regularizing the entropy of the model's prediction (controlled by the parameter $\gamma$), thereby reining in the model's overconfidence. Further improvement is expected if $\gamma$ is selected independently for each training sample (Sample-Dependent Focal Loss (FLSD-53) \cite{mukhoti2020}). However, FLSD-53 is based on heuristics and does not generalize well. In this paper, we propose a calibration-aware adaptive focal loss called AdaFocal that utilizes the calibration properties of focal (and inverse-focal) loss and adaptively modifies $\gamma_t$ for different groups of samples based on $\gamma_{t-1}$ from the previous step and the knowledge of model's under/over-confidence on the validation set. We evaluate AdaFocal on various image recognition and one NLP task, covering a wide variety of network architectures, to confirm the improvement in calibration while achieving similar levels of accuracy. Additionally, we show that models trained with AdaFocal achieve a significant boost in out-of-distribution detection.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods