Adaptive Drift-Diffusion Process to Learn Time Intervals

11 Mar 2011  ·  Francois Rivest, Yoshua Bengio ·

Animals learn the timing between consecutive events very easily. Their precision is usually proportional to the interval to time (Weber's law for timing). Most current timing models either require a central clock and unbounded accumulator or whole pre-defined populations of delay lines, decaying traces or oscillators to represent elapsing time. Current adaptive recurrent neural networks fail at learning to predict the timing of future events (the 'when') in a realistic manner. In this paper, we present a new model of interval timing, based on simple temporal integrators, derived from drift-diffusion models. We develop a simple geometric rule to learn 'when' instead of 'what'. We provide an analytical proof that the model can learn inter-event intervals in a number of trials independent of the interval size and that the temporal precision of the system is proportional to the timed interval. This new model uses no clock, no gradient, no unbounded accumulators, no delay lines, and has internal noise allowing generations of individual trials. Three interesting predictions are made.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here