ADOL - Markovian approximation of rough lognormal model

19 Apr 2019  ·  Peter Carr, Andrey Itkin ·

In this paper we apply Markovian approximation of the fractional Brownian motion (BM), known as the Dobric-Ojeda (DO) process, to the fractional stochastic volatility model where the instantaneous variance is modelled by a lognormal process with drift and fractional diffusion. Since the DO process is a semi-martingale, it can be represented as an \Ito diffusion. It turns out that in this framework the process for the spot price $S_t$ is a geometric BM with stochastic instantaneous volatility $\sigma_t$, the process for $\sigma_t$ is also a geometric BM with stochastic speed of mean reversion and time-dependent colatility of volatility, and the supplementary process $\calV_t$ is the Ornstein-Uhlenbeck process with time-dependent coefficients, and is also a function of the Hurst exponent. We also introduce an adjusted DO process which provides a uniformly good approximation of the fractional BM for all Hurst exponents $H \in [0,1]$ but requires a complex measure. Finally, the characteristic function (CF) of $\log S_t$ in our model can be found in closed form by using asymptotic expansion. Therefore, pricing options and variance swaps (by using a forward CF) can be done via FFT, which is much easier than in rough volatility models.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here