Adversarial Vulnerability of Temporal Feature Networks for Object Detection

23 Aug 2022  ·  Svetlana Pavlitskaya, Nikolai Polley, Michael Weber, J. Marius Zöllner ·

Taking into account information across the temporal domain helps to improve environment perception in autonomous driving. However, it has not been studied so far whether temporally fused neural networks are vulnerable to deliberately generated perturbations, i.e. adversarial attacks, or whether temporal history is an inherent defense against them. In this work, we study whether temporal feature networks for object detection are vulnerable to universal adversarial attacks. We evaluate attacks of two types: imperceptible noise for the whole image and locally-bound adversarial patch. In both cases, perturbations are generated in a white-box manner using PGD. Our experiments confirm, that attacking even a portion of a temporal input suffices to fool the network. We visually assess generated perturbations to gain insights into the functioning of attacks. To enhance the robustness, we apply adversarial training using 5-PGD. Our experiments on KITTI and nuScenes datasets demonstrate, that a model robustified via K-PGD is able to withstand the studied attacks while keeping the mAP-based performance comparable to that of an unattacked model.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here