Adversarially Robust Learning: A Generic Minimax Optimal Learner and Characterization

15 Sep 2022  ·  Omar Montasser, Steve Hanneke, Nathan Srebro ·

We present a minimax optimal learner for the problem of learning predictors robust to adversarial examples at test-time. Interestingly, we find that this requires new algorithmic ideas and approaches to adversarially robust learning. In particular, we show, in a strong negative sense, the suboptimality of the robust learner proposed by Montasser, Hanneke, and Srebro (2019) and a broader family of learners we identify as local learners. Our results are enabled by adopting a global perspective, specifically, through a key technical contribution: the global one-inclusion graph, which may be of independent interest, that generalizes the classical one-inclusion graph due to Haussler, Littlestone, and Warmuth (1994). Finally, as a byproduct, we identify a dimension characterizing qualitatively and quantitatively what classes of predictors $\mathcal{H}$ are robustly learnable. This resolves an open problem due to Montasser et al. (2019), and closes a (potentially) infinite gap between the established upper and lower bounds on the sample complexity of adversarially robust learning.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here