An Efficient Finite Difference Approximation via a Double Sample-Recycling Approach

9 May 2024  ·  Guo Liang, Guangwu Liu, Kun Zhang ·

Estimating stochastic gradients is pivotal in fields like service systems within operations research. The classical method for this estimation is the finite difference approximation, which entails generating samples at perturbed inputs. Nonetheless, practical challenges persist in determining the perturbation and obtaining an optimal finite difference estimator in the sense of possessing the smallest mean squared error (MSE). To tackle this problem, we propose a double sample-recycling approach in this paper. Firstly, pilot samples are recycled to estimate the optimal perturbation. Secondly, recycling these pilot samples again and generating new samples at the estimated perturbation, lead to an efficient finite difference estimator. We analyze its bias, variance and MSE. Our analyses demonstrate a reduction in asymptotic variance, and in some cases, a decrease in asymptotic bias, compared to the optimal finite difference estimator. Therefore, our proposed estimator consistently coincides with, or even outperforms the optimal finite difference estimator. In numerical experiments, we apply the estimator in several examples, and numerical results demonstrate its robustness, as well as coincidence with the theory presented, especially in the case of small sample sizes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here