An Even More Optimal Stochastic Optimization Algorithm: Minibatching and Interpolation Learning

NeurIPS 2021  ·  Blake Woodworth, Nathan Srebro ·

We present and analyze an algorithm for optimizing smooth and convex or strongly convex objectives using minibatch stochastic gradient estimates. The algorithm is optimal with respect to its dependence on both the minibatch size and minimum expected loss simultaneously. This improves over the optimal method of Lan (2012), which is insensitive to the minimum expected loss; over the optimistic acceleration of Cotter et al. (2011), which has suboptimal dependence on the minibatch size; and over the algorithm of Liu and Belkin (2018), which is limited to least squares problems and is also similarly suboptimal with respect to the minibatch size. Applied to interpolation learning, the improvement over Cotter et al. and Liu and Belkin translates to a linear, rather than square-root, parallelization speedup.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here