An Improved Finite-time Analysis of Temporal Difference Learning with Deep Neural Networks

7 May 2024  ·  Zhifa Ke, Zaiwen Wen, Junyu Zhang ·

Temporal difference (TD) learning algorithms with neural network function parameterization have well-established empirical success in many practical large-scale reinforcement learning tasks. However, theoretical understanding of these algorithms remains challenging due to the nonlinearity of the action-value approximation. In this paper, we develop an improved non-asymptotic analysis of the neural TD method with a general $L$-layer neural network. New proof techniques are developed and an improved new $\tilde{\mathcal{O}}(\epsilon^{-1})$ sample complexity is derived. To our best knowledge, this is the first finite-time analysis of neural TD that achieves an $\tilde{\mathcal{O}}(\epsilon^{-1})$ complexity under the Markovian sampling, as opposed to the best known $\tilde{\mathcal{O}}(\epsilon^{-2})$ complexity in the existing literature.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here