An Improved Iterative Neural Network for High-Quality Image-Domain Material Decomposition in Dual-Energy CT

2 Dec 2020  ·  Zhipeng Li, Yong Long, Il Yong Chun ·

Dual-energy computed tomography (DECT) has been widely used in many applications that need material decomposition. Image-domain methods directly decompose material images from high- and low-energy attenuation images, and thus, are susceptible to noise and artifacts on attenuation images. The purpose of this study is to develop an improved iterative neural network (INN) for high-quality image-domain material decomposition in DECT, and to study its properties. We propose a new INN architecture for DECT material decomposition. The proposed INN architecture uses distinct cross-material convolutional neural network (CNN) in image refining modules, and uses image decomposition physics in image reconstruction modules. The distinct cross-material CNN refiners incorporate distinct encoding-decoding filters and cross-material model that captures correlations between different materials. We study the distinct cross-material CNN refiner with patch-based reformulation and tight-frame condition. Numerical experiments with extended cardiactorso (XCAT) phantom and clinical data show that the proposed INN significantly improves the image quality over several image-domain material decomposition methods, including a conventional model-based image decomposition (MBID) method using an edge-preserving regularizer, a recent MBID method using pre-learned material-wise sparsifying transforms, and a noniterative deep CNN method. Our study with patch-based reformulations reveals that learned filters of distinct cross-material CNN refiners can approximately satisfy the tight-frame condition.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here