An Introduction to Probabilistic Spiking Neural Networks: Probabilistic Models, Learning Rules, and Applications

2 Oct 2019  ·  Hyeryung Jang, Osvaldo Simeone, Brian Gardner, André Grüning ·

Spiking neural networks (SNNs) are distributed trainable systems whose computing elements, or neurons, are characterized by internal analog dynamics and by digital and sparse synaptic communications. The sparsity of the synaptic spiking inputs and the corresponding event-driven nature of neural processing can be leveraged by energy-efficient hardware implementations, which can offer significant energy reductions as compared to conventional artificial neural networks (ANNs). The design of training algorithms lags behind the hardware implementations. Most existing training algorithms for SNNs have been designed either for biological plausibility or through conversion from pretrained ANNs via rate encoding. This article provides an introduction to SNNs by focusing on a probabilistic signal processing methodology that enables the direct derivation of learning rules by leveraging the unique time-encoding capabilities of SNNs. We adopt discrete-time probabilistic models for networked spiking neurons and derive supervised and unsupervised learning rules from first principles via variational inference. Examples and open research problems are also provided.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here