Decoupled Sequence and Structure Generation for Realistic Antibody Design

8 Feb 2024  ·  Nayoung Kim, Minsu Kim, Sungsoo Ahn, Jinkyoo Park ·

Antibody design plays a pivotal role in advancing therapeutics. Although deep learning has made rapid progress in this field, existing methods jointly generate antibody sequences and structures, limiting task-specific optimization. In response, we propose an antibody sequence-structure decoupling (ASSD) framework, which separates sequence generation and structure prediction. Although our approach is simple, such a decoupling strategy has been overlooked in previous works. We also find that the widely used non-autoregressive generators promote sequences with overly repeating tokens. Such sequences are both out-of-distribution and prone to undesirable developability properties that can trigger harmful immune responses in patients. To resolve this, we introduce a composition-based objective that allows an efficient trade-off between high performance and low token repetition. Our results demonstrate that ASSD consistently outperforms existing antibody design models, while the composition-based objective successfully mitigates token repetition of non-autoregressive models. Our code is available at \url{https://github.com/lkny123/ASSD_public}.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods