Anisotropic response of spin susceptibility in the superconducting state of UTe$_2$ probed with $^{125}$Te-NMR measurement

4 Mar 2021  ·  Genki Nakamine, Katsuki Kinjo, Shunsaku Kitagawa, Kenji Ishida, Yo Tokunaga, Hironori Sakai, Shinsaku Kambe, Ai Nakamura, Yusei Shimizu, Yoshiya Homma, Dexin Li, Fuminori Honda, Dai Aoki ·

To investigate spin susceptibility in a superconducting (SC) state, we measured the $^{125}$Te-nuclear magnetic resonance (NMR) Knight shifts at magnetic fields ($H$) up to 6.5 T along the $b$ and $c$ axes of single-crystal UTe$_2$, a promising candidate for a spin-triplet superconductor. In the SC state, the Knight shifts along the $b$ and $c$ axes ($K_b$ and $K_c$, respectively) decreased slightly and the decrease in $K_b$ was almost constant up to 6.5 T. The reduction in $K_c$ decreased with increasing $H$, and $K_c$ was unchanged through the SC transition temperature at 5.5 T, excluding the possibility of spin-singlet pairing. Our results indicate that spin susceptibilities along the $b$ and $c$ axes slightly decrease in the SC state in low $H$, and the $H$ response of SC spin susceptibility is anisotropic in the $bc$ plane. We discuss the possible $d$-vector state within the spin-triplet scenario and suggest that the dominant $d$-vector component for the case of $H \parallel b$ changes above 13 T, where $T_{\rm c}$ increases with increasing $H$.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Superconductivity Strongly Correlated Electrons