Paper

Apparate: Rethinking Early Exits to Tame Latency-Throughput Tensions in ML Serving

Machine learning (ML) inference platforms are tasked with balancing two competing goals: ensuring high throughput given many requests, and delivering low-latency responses to support interactive applications. Unfortunately, existing platform knobs (e.g., batch sizes) fail to ease this fundamental tension, and instead only enable users to harshly trade off one property for the other. This paper explores an alternate strategy to taming throughput-latency tradeoffs by changing the granularity at which inference is performed. We present Apparate, a system that automatically applies and manages early exits (EEs) in ML models, whereby certain inputs can exit with results at intermediate layers. To cope with the time-varying overhead and accuracy challenges that EEs bring, Apparate repurposes exits to provide continual feedback that powers several novel runtime monitoring and adaptation strategies. Apparate lowers median response latencies by 40.5-91.5% and 10.0-24.2% for diverse CV and NLP workloads, respectively, without affecting throughputs or violating tight accuracy constraints.

Results in Papers With Code
(↓ scroll down to see all results)