Application of Zone Method based Physics-Informed Neural Networks in Reheating Furnaces

30 Aug 2023  ·  Ujjal Kr Dutta, Aldo Lipani, Chuan Wang, Yukun Hu ·

Foundation Industries (FIs) constitute glass, metals, cement, ceramics, bulk chemicals, paper, steel, etc. and provide crucial, foundational materials for a diverse set of economically relevant industries: automobiles, machinery, construction, household appliances, chemicals, etc. Reheating furnaces within the manufacturing chain of FIs are energy-intensive. Accurate and real-time prediction of underlying temperatures in reheating furnaces has the potential to reduce the overall heating time, thereby controlling the energy consumption for achieving the Net-Zero goals in FIs. In this paper, we cast this prediction as a regression task and explore neural networks due to their inherent capability of being effective and efficient, given adequate data. However, due to the infeasibility of achieving good-quality real data in scenarios like reheating furnaces, classical Hottel's zone method based computational model has been used to generate data for model training. To further enhance the Out-Of-Distribution generalization capability of the trained model, we propose a Physics-Informed Neural Network (PINN) by incorporating prior physical knowledge using a set of novel Energy-Balance regularizers.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here