Asymptotics for rough stochastic volatility models

27 Oct 2016  ·  Martin Forde, Hongzhong Zhang ·

Using the large deviation principle (LDP) for a re-scaled fractional Brownian motion $B^H_t$ where the rate function is defined via the reproducing kernel Hilbert space, we compute small-time asymptotics for a correlated fractional stochastic volatility model of the form $dS_t=S_t\sigma(Y_t) (\bar{\rho} dW_t +\rho dB_t), \,dY_t=dB^H_t$ where $\sigma$ is $\alpha$-H\"{o}lder continuous for some $\alpha\in(0,1]$; in particular, we show that $t^{H-\frac{1}{2}} \log S_t $ satisfies the LDP as $t\to0$ and the model has a well-defined implied volatility smile as $t \to 0$, when the log-moneyness $k(t)=x t^{\frac{1}{2}-H}$. Thus the smile steepens to infinity or flattens to zero depending on whether $H\in(0,\frac{1}{2})$ or $H\in(\frac{1}{2},1)$. We also compute large-time asymptotics for a fractional local-stochastic volatility model of the form: $dS_t= S_t^{\beta} |Y_t|^p dW_t,dY_t=dB^H_t$, and we generalize two identities in Matsumoto&Yor05 to show that $\frac{1}{t^{2H}}\log \frac{1}{t}\int_0^t e^{2 B^H_s} ds$ and $\frac{1}{t^{2H}}(\log \int_0^t e^{2(\mu s+B^H_s)} ds-2 \mu t)$ converge in law to $ 2\mathrm{max}_{0 \le s \le 1} B^H_{s}$ and $2B_1$ respectively for $H \in (0,\frac{1}{2})$ and $\mu>0$ as $t \to \infty$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here