Autoregressive Bandits

Autoregressive processes naturally arise in a large variety of real-world scenarios, including stock markets, sales forecasting, weather prediction, advertising, and pricing. When facing a sequential decision-making problem in such a context, the temporal dependence between consecutive observations should be properly accounted for guaranteeing convergence to the optimal policy. In this work, we propose a novel online learning setting, namely, Autoregressive Bandits (ARBs), in which the observed reward is governed by an autoregressive process of order $k$, whose parameters depend on the chosen action. We show that, under mild assumptions on the reward process, the optimal policy can be conveniently computed. Then, we devise a new optimistic regret minimization algorithm, namely, AutoRegressive Upper Confidence Bound (AR-UCB), that suffers sublinear regret of order $\widetilde{\mathcal{O}} \left( \frac{(k+1)^{3/2}\sqrt{nT}}{(1-\Gamma)^2}\right)$, where $T$ is the optimization horizon, $n$ is the number of actions, and $\Gamma < 1$ is a stability index of the process. Finally, we empirically validate our algorithm, illustrating its advantages w.r.t. bandit baselines and its robustness to misspecification of key parameters.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here