Paper

Bayesian nonparametric image segmentation using a generalized Swendsen-Wang algorithm

Unsupervised image segmentation aims at clustering the set of pixels of an image into spatially homogeneous regions. We introduce here a class of Bayesian nonparametric models to address this problem. These models are based on a combination of a Potts-like spatial smoothness component and a prior on partitions which is used to control both the number and size of clusters. This class of models is flexible enough to include the standard Potts model and the more recent Potts-Dirichlet Process model \cite{Orbanz2008}. More importantly, any prior on partitions can be introduced to control the global clustering structure so that it is possible to penalize small or large clusters if necessary. Bayesian computation is carried out using an original generalized Swendsen-Wang algorithm. Experiments demonstrate that our method is competitive in terms of RAND\ index compared to popular image segmentation methods, such as mean-shift, and recent alternative Bayesian nonparametric models.

Results in Papers With Code
(↓ scroll down to see all results)