Beam Squint Assisted User Localization in Near-Field Integrated Sensing and Communications Systems

25 Sep 2023  ·  Hongliang Luo, Feifei Gao, Wanmai Yuan, Shun Zhang ·

Integrated sensing and communication (ISAC) has been regarded as a key technology for 6G wireless communications, in which large-scale multiple input and multiple output (MIMO) array with higher and wider frequency bands will be adopted. However, recent studies show that the beam squint phenomenon can not be ignored in wideband MIMO system, which generally deteriorates the communications performance. In this paper, we find that with the aid of true-time-delay lines (TTDs), the range and trajectory of the beam squint in near-field communications systems can be freely controlled, and hence it is possible to reversely utilize the beam squint for user localization. We derive the trajectory equation for near-field beam squint points and design a way to control such trajectory. With the proposed design, beamforming from different subcarriers would purposely point to different angles and different distances, such that users from different positions would receive the maximum power at different subcarriers. Hence, one can simply localize multiple users from the beam squint effect in frequency domain, and thus reduce the beam sweeping overhead as compared to the conventional time domain beam search based approach. Furthermore, we utilize the phase difference of the maximum power subcarriers received by the user at different frequencies in several times beam sweeping to obtain a more accurate distance estimation result, ultimately realizing high accuracy and low beam sweeping overhead user localization. Simulation results demonstrate the effectiveness of the proposed schemes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here