Paper

Benchmark for Out-of-Distribution Detection in Deep Reinforcement Learning

Reinforcement Learning (RL) based solutions are being adopted in a variety of domains including robotics, health care and industrial automation. Most focus is given to when these solutions work well, but they fail when presented with out of distribution inputs. RL policies share the same faults as most machine learning models. Out of distribution detection for RL is generally not well covered in the literature, and there is a lack of benchmarks for this task. In this work we propose a benchmark to evaluate OOD detection methods in a Reinforcement Learning setting, by modifying the physical parameters of non-visual standard environments or corrupting the state observation for visual environments. We discuss ways to generate custom RL environments that can produce OOD data, and evaluate three uncertainty methods for the OOD detection task. Our results show that ensemble methods have the best OOD detection performance with a lower standard deviation across multiple environments.

Results in Papers With Code
(↓ scroll down to see all results)