Breaking Free from Fusion Rule: A Fully Semantic-driven Infrared and Visible Image Fusion

22 Nov 2022  ·  Yuhui Wu, Zhu Liu, JinYuan Liu, Xin Fan, Risheng Liu ·

Infrared and visible image fusion plays a vital role in the field of computer vision. Previous approaches make efforts to design various fusion rules in the loss functions. However, these experimental designed fusion rules make the methods more and more complex. Besides, most of them only focus on boosting the visual effects, thus showing unsatisfactory performance for the follow-up high-level vision tasks. To address these challenges, in this letter, we develop a semantic-level fusion network to sufficiently utilize the semantic guidance, emancipating the experimental designed fusion rules. In addition, to achieve a better semantic understanding of the feature fusion process, a fusion block based on the transformer is presented in a multi-scale manner. Moreover, we devise a regularization loss function, together with a training strategy, to fully use semantic guidance from the high-level vision tasks. Compared with state-of-the-art methods, our method does not depend on the hand-crafted fusion loss function. Still, it achieves superior performance on visual quality along with the follow-up high-level vision tasks.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here