Capsule Networks Need an Improved Routing Algorithm

31 Jul 2019  ·  Inyoung Paik, Taeyeong Kwak, Injung Kim ·

In capsule networks, the routing algorithm connects capsules in consecutive layers, enabling the upper-level capsules to learn higher-level concepts by combining the concepts of the lower-level capsules. Capsule networks are known to have a few advantages over conventional neural networks, including robustness to 3D viewpoint changes and generalization capability. However, some studies have reported negative experimental results. Nevertheless, the reason for this phenomenon has not been analyzed yet. We empirically analyzed the effect of five different routing algorithms. The experimental results show that the routing algorithms do not behave as expected and often produce results that are worse than simple baseline algorithms that assign the connection strengths uniformly or randomly. We also show that, in most cases, the routing algorithms do not change the classification result but polarize the link strengths, and the polarization can be extreme when they continue to repeat without stopping. In order to realize the true potential of the capsule network, it is essential to develop an improved routing algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here