Paper

Estimating a Directed Tree for Extremes

We propose a new method to estimate a root-directed spanning tree from extreme data. A prominent example is a river network, to be discovered from extreme flow measured at a set of stations. Our new algorithm utilizes qualitative aspects of a max-linear Bayesian network, which has been designed for modelling causality in extremes. The algorithm estimates bivariate scores and returns a root-directed spanning tree. It performs extremely well on benchmark data and new data. We prove that the new estimator is consistent under a max-linear Bayesian network model with noise. We also assess its strengths and limitations in a small simulation study.

Results in Papers With Code
(↓ scroll down to see all results)