Cell-Free Massive MIMO in O-RAN: Energy-Aware Joint Orchestration of Cloud, Fronthaul, and Radio Resources

15 Jan 2023  ·  Özlem Tuğfe Demir, Meysam Masoudi, Emil Björnson, Cicek Cavdar ·

For the energy-efficient deployment of cell-free massive MIMO functionality in a practical wireless network, the end-to-end (from radio site to the cloud) energy-aware operation is essential. In line with the cloudification and virtualization in the open radio access networks (O-RAN), it is indisputable to envision prospective cell-free infrastructure on top of the O-RAN architecture. In this paper, we explore the performance and power consumption of cell-free massive MIMO technology in comparison with traditional small-cell systems, in the virtualized O-RAN architecture. We compare two different functional split options and different resource orchestration mechanisms. In the end-to-end orchestration scheme, we aim to minimize the end-to-end power consumption by jointly allocating the radio, optical fronthaul, and virtualized cloud processing resources. We compare end-to-end orchestration with two other schemes: i) "radio-only" where radio resources are optimized independently from the cloud and ii) "local cloud coordination" where orchestration is only allowed among a local cluster of radio units. We develop several algorithms to solve the end-to-end power minimization and sum spectral efficiency maximization problems. The numerical results demonstrate that end-to-end resource allocation with fully virtualized fronthaul and cloud resources provides a substantial additional power saving than the other resource orchestration schemes.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here