Closed-Loop Design of Proton Donors for Lithium-Mediated Ammonia Synthesis with Interpretable Models and Molecular Machine Learning

In this work, we experimentally determined the efficacy of several classes of proton donors for lithium-mediated electrochemical nitrogen reduction in a tetrahydrofuran-based electrolyte, an attractive alternative method for producing ammonia. We then built an interpretable data-driven classification model which identified solvatochromic Kamlet-Taft parameters as important for distinguishing between active and inactive proton donors. After curating a dataset for the Kamlet-Taft parameters, we trained a deep learning model to predict the Kamlet-Taft parameters. The combination of classification model and deep learning model provides a predictive mapping from a given proton donor to the ability to produce ammonia. We demonstrate that this combination of classification model with deep learning is superior to a purely mechanistic or data-driven approach in accuracy and experimental data efficiency.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here