Closure Certificates

27 May 2023  ·  Vishnu Murali, Ashutosh Trivedi, Majid Zamani ·

A barrier certificate, defined over the states of a dynamical system, is a real-valued function whose zero level set characterizes an inductively verifiable state invariant separating reachable states from unsafe ones. When combined with powerful decision procedures such as sum-of-squares programming (SOS) or satisfiability-modulo-theory solvers (SMT) barrier certificates enable an automated deductive verification approach to safety. The barrier certificate approach has been extended to refute omega-regular specifications by separating consecutive transitions of omega-automata in the hope of denying all accepting runs. Unsurprisingly, such tactics are bound to be conservative as refutation of recurrence properties requires reasoning about the well-foundedness of the transitive closure of the transition relation. This paper introduces the notion of closure certificates as a natural extension of barrier certificates from state invariants to transition invariants. We provide SOS and SMT based characterization for automating the search of closure certificates and demonstrate their effectiveness via a paradigmatic case study.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Logic in Computer Science Systems and Control Systems and Control

Datasets


  Add Datasets introduced or used in this paper