Collaborative Deep Reinforcement Learning for Resource Optimization in Non-Terrestrial Networks

6 Feb 2024  ·  Yang Cao, Shao-Yu Lien, Ying-Chang Liang, Dusit Niyato, Xuemin, Shen ·

Non-terrestrial networks (NTNs) with low-earth orbit (LEO) satellites have been regarded as promising remedies to support global ubiquitous wireless services. Due to the rapid mobility of LEO satellite, inter-beam/satellite handovers happen frequently for a specific user equipment (UE). To tackle this issue, earth-fixed cell scenarios have been under studied, in which the LEO satellite adjusts its beam direction towards a fixed area within its dwell duration, to maintain stable transmission performance for the UE. Therefore, it is required that the LEO satellite performs real-time resource allocation, which however is unaffordable by the LEO satellite with limited computing capability. To address this issue, in this paper, we propose a two-time-scale collaborative deep reinforcement learning (DRL) scheme for beam management and resource allocation in NTNs, in which LEO satellite and UE with different control cycles update their decision-making policies through a sequential manner. Specifically, UE updates its policy subject to improving the value functions of both the agents. Furthermore, the LEO satellite only makes decisions through finite-step rollouts with a reference decision trajectory received from the UE. Simulation results show that the proposed scheme can effectively balance the throughput performance and computational complexity over traditional greedy-searching schemes.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here