Community-Aware Graph Signal Processing

24 Aug 2020  ·  Miljan Petrovic, Raphael Liegeois, Thomas A. W. Bolton, Dimitri Van De Ville ·

The emerging field of graph signal processing (GSP) allows to transpose classical signal processing operations (e.g., filtering) to signals on graphs. The GSP framework is generally built upon the graph Laplacian, which plays a crucial role to study graph properties and measure graph signal smoothness. Here instead, we propose the graph modularity matrix as the centerpiece of GSP, in order to incorporate knowledge about graph community structure when processing signals on the graph, but without the need for community detection. We study this approach in several generic settings such as filtering, optimal sampling and reconstruction, surrogate data generation, and denoising. Feasibility is illustrated by a small-scale example and a transportation network dataset, as well as one application in human neuroimaging where community-aware GSP reveals relationships between behavior and brain features that are not shown by Laplacian-based GSP. This work demonstrates how concepts from network science can lead to new meaningful operations on graph signals.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here