Conditional variational autoencoder to improve neural audio synthesis for polyphonic music sound

16 Nov 2022  ·  Seokjin Lee, Minhan Kim, Seunghyeon Shin, Daeho Lee, Inseon Jang, Wootaek Lim ·

Deep generative models for audio synthesis have recently been significantly improved. However, the task of modeling raw-waveforms remains a difficult problem, especially for audio waveforms and music signals. Recently, the realtime audio variational autoencoder (RAVE) method was developed for high-quality audio waveform synthesis. The RAVE method is based on the variational autoencoder and utilizes the two-stage training strategy. Unfortunately, the RAVE model is limited in reproducing wide-pitch polyphonic music sound. Therefore, to enhance the reconstruction performance, we adopt the pitch activation data as an auxiliary information to the RAVE model. To handle the auxiliary information, we propose an enhanced RAVE model with a conditional variational autoencoder structure and an additional fully-connected layer. To evaluate the proposed structure, we conducted a listening experiment based on multiple stimulus tests with hidden references and an anchor (MUSHRA) with the MAESTRO. The obtained results indicate that the proposed model exhibits a more significant performance and stability improvement than the conventional RAVE model.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods