Conex-Connect: Learning Patterns in Extremal Brain Connectivity From Multi-Channel EEG Data

3 Jan 2021  ·  Matheus B. Guerrero, Raphaël Huser, Hernando Ombao ·

Epilepsy is a chronic neurological disorder affecting more than 50 million people globally. An epileptic seizure acts like a temporary shock to the neuronal system, disrupting normal electrical activity in the brain. Epilepsy is frequently diagnosed with electroencephalograms (EEGs). Current methods study the time-varying spectra and coherence but do not directly model changes in extreme behavior. Thus, we propose a new approach to characterize brain connectivity based on the joint tail behavior of the EEGs. Our proposed method, the conditional extremal dependence for brain connectivity (Conex-Connect), is a pioneering approach that links the association between extreme values of higher oscillations at a reference channel with the other brain network channels. Using the Conex-Connect method, we discover changes in the extremal dependence driven by the activity at the foci of the epileptic seizure. Our model-based approach reveals that, pre-seizure, the dependence is notably stable for all channels when conditioning on extreme values of the focal seizure area. Post-seizure, by contrast, the dependence between channels is weaker, and dependence patterns are more "chaotic". Moreover, in terms of spectral decomposition, we find that high values of the high-frequency Gamma-band are the most relevant features to explain the conditional extremal dependence of brain connectivity.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here