Constructing a personalized learning path using genetic algorithms approach

22 Apr 2021  ·  Lumbardh Elshani, Krenare Pireva Nuçi ·

A substantial disadvantage of traditional learning is that all students follow the same learning sequence, but not all of them have the same background of knowledge, the same preferences, the same learning goals, and the same needs. Traditional teaching resources, such as textbooks, in most cases pursue students to follow fixed sequences during the learning process, thus impairing their performance. Learning sequencing is an important research issue as part of the learning process because no fixed learning paths will be appropriate for all learners. For this reason, many research papers are focused on the development of mechanisms to offer personalization on learning paths, considering the learner needs, interests, behaviors, and abilities. In most cases, these researchers are totally focused on the student's preferences, ignoring the level of difficulty and the relation degree that exists between various concepts in a course. This research paper presents the possibility of constructing personalized learning paths using genetic algorithm-based model, encountering the level of difficulty and relation degree of the constituent concepts of a course. The experimental results shows that the genetic algorithm is suitable to generate optimal learning paths based on learning object difficulty level, duration, rating, and relation degree between each learning object as elementary parts of the sequence of the learning path. From these results compared to the quality of the traditional learning path, we observed that even the quality of the weakest learning path generated by our GA approach is in a favor compared to quality of the traditional learning path, with a difference of 3.59\%, while the highest solution generated in the end resulted 8.34\% in favor of our proposal compared to the traditional learning paths.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods