Contextual Hourglass Network for Semantic Segmentation of High Resolution Aerial Imagery

30 Oct 2018  ·  Panfeng Li, Youzuo Lin, Emily Schultz-Fellenz ·

Semantic segmentation for aerial imagery is a challenging and important problem in remotely sensed imagery analysis. In recent years, with the success of deep learning, various convolutional neural network (CNN) based models have been developed. However, due to the varying sizes of the objects and imbalanced class labels, it can be challenging to obtain accurate pixel-wise semantic segmentation results. To address those challenges, we develop a novel semantic segmentation method and call it Contextual Hourglass Network. In our method, in order to improve the robustness of the prediction, we design a new contextual hourglass module which incorporates attention mechanism on processed low-resolution featuremaps to exploit the contextual semantics. We further exploit the stacked encoder-decoder structure by connecting multiple contextual hourglass modules from end to end. This architecture can effectively extract rich multi-scale features and add more feedback loops for better learning contextual semantics through intermediate supervision. To demonstrate the efficacy of our semantic segmentation method, we test it on Potsdam and Vaihingen datasets. Through the comparisons to other baseline methods, our method yields the best results on overall performance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here