Control of complex systems with generalized embedding and empirical dynamic modeling

29 Nov 2023  ·  Joseph Park, George Sugihara, Gerald Pao ·

Effective control requires knowledge of the process dynamics to guide the system toward desired states. In many control applications this knowledge is expressed mathematically or through data-driven models, however, as complexity grows obtaining a satisfactory mathematical representation is increasingly difficult. Further, many data-driven approaches consist of abstract internal representations that may have no obvious connection to the underlying dynamics and control, or, require extensive model design and training. Here, we remove these constraints by demonstrating model predictive control from generalized state space embedding of the process dynamics providing a data-driven, explainable method for control of nonlinear, complex systems. Generalized embedding and model predictive control are demonstrated on nonlinear dynamics generated by an agent based model of 1200 interacting agents. The method is generally applicable to any type of controller and dynamic system representable in a state space.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here