Conv-Basis: A New Paradigm for Efficient Attention Inference and Gradient Computation in Transformers

8 May 2024  ·  Jiuxiang Gu, YIngyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, Junze Yin ·

Large Language Models (LLMs) have profoundly changed the world. Their self-attention mechanism is the key to the success of transformers in LLMs. However, the quadratic computational cost $O(n^2)$ to the length $n$ input sequence is the notorious obstacle for further improvement and scalability in the longer context. In this work, we leverage the convolution-like structure of attention matrices to develop an efficient approximation method for attention computation using convolution matrices. We propose a $\mathsf{conv}$ basis system, "similar" to the rank basis, and show that any lower triangular (attention) matrix can always be decomposed as a sum of $k$ structured convolution matrices in this basis system. We then design an algorithm to quickly decompose the attention matrix into $k$ convolution matrices. Thanks to Fast Fourier Transforms (FFT), the attention {\it inference} can be computed in $O(knd \log n)$ time, where $d$ is the hidden dimension. In practice, we have $ d \ll n$, i.e., $d=3,072$ and $n=1,000,000$ for Gemma. Thus, when $kd = n^{o(1)}$, our algorithm achieve almost linear time, i.e., $n^{1+o(1)}$. Furthermore, the attention {\it training forward} and {\it backward gradient} can be computed in $n^{1+o(1)}$ as well. Our approach can avoid explicitly computing the $n \times n$ attention matrix, which may largely alleviate the quadratic computational complexity. Furthermore, our algorithm works on any input matrices. This work provides a new paradigm for accelerating attention computation in transformers to enable their application to longer contexts.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods