Convolutional Neural Network-based Efficient Dense Point Cloud Generation using Unsigned Distance Fields

22 Mar 2022  ·  Abol Basher, Jani Boutellier ·

Dense point cloud generation from a sparse or incomplete point cloud is a crucial and challenging problem in 3D computer vision and computer graphics. So far, the existing methods are either computationally too expensive, suffer from limited resolution, or both. In addition, some methods are strictly limited to watertight surfaces -- another major obstacle for a number of applications. To address these issues, we propose a lightweight Convolutional Neural Network that learns and predicts the unsigned distance field for arbitrary 3D shapes for dense point cloud generation using the recently emerged concept of implicit function learning. Experiments demonstrate that the proposed architecture outperforms the state of the art by 7.8x less model parameters, 2.4x faster inference time and up to 24.8% improved generation quality compared to the state-of-the-art.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here