Cooperativity transitions driven by higher-order oligomer formations in ligand-induced receptor dimerization

27 May 2019  ·  Masaki Watabe, Satya N. V. Arjunan, Wei Xiang Chew, Kazunari Kaizu, Koichi Takahashi ·

While cooperativity in ligand-induced receptor dimerization has been linked with receptor-receptor couplings via minimal representations of physical observables, effects arising from higher-order oligomer (e.g., trimer and tetramer) formations of unobserved receptors have received less attention. Here, we propose a dimerization model of ligand-induced receptors in multivalent form representing physical observables under basis vectors of various aggregated receptor-states. Our simulations of multivalent models not only reject Wofsy-Goldstein parameter conditions for cooperativity, but show higher-order oligomer formations can shift cooperativity from positive to negative.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here