Paper

CyclicFL: A Cyclic Model Pre-Training Approach to Efficient Federated Learning

Since random initial models in Federated Learning (FL) can easily result in unregulated Stochastic Gradient Descent (SGD) processes, existing FL methods greatly suffer from both slow convergence and poor accuracy, especially for non-IID scenarios. To address this problem, we propose a novel FL method named CyclicFL, which can quickly derive effective initial models to guide the SGD processes, thus improving the overall FL training performance. Based on the concept of Continual Learning (CL), we prove that CyclicFL approximates existing centralized pre-training methods in terms of classification and prediction performance. Meanwhile, we formally analyze the significance of data consistency between the pre-training and training stages of CyclicFL, showing the limited Lipschitzness of loss for the pre-trained models by CyclicFL. Unlike traditional centralized pre-training methods that require public proxy data, CyclicFL pre-trains initial models on selected clients cyclically without exposing their local data. Therefore, they can be easily integrated into any security-critical FL methods. Comprehensive experimental results show that CyclicFL can not only improve the classification accuracy by up to 16.21%, but also significantly accelerate the overall FL training processes.

Results in Papers With Code
(↓ scroll down to see all results)