Decrypting Nonlinearity: Koopman Interpretation and Analysis of Cryptosystems

21 Nov 2023  ·  Robin Strässer, Sebastian Schlor, Frank Allgöwer ·

Public-key cryptosystems rely on computationally difficult problems for security, traditionally analyzed using number theory methods. In this paper, we introduce a novel perspective on cryptosystems by viewing the Diffie-Hellman key exchange and the Rivest-Shamir-Adleman cryptosystem as nonlinear dynamical systems. By applying Koopman theory, we transform these dynamical systems into higher-dimensional spaces and analytically derive equivalent purely linear systems. This formulation allows us to reconstruct the secret integers of the cryptosystems through straightforward manipulations, leveraging the tools available for linear systems analysis. Additionally, we establish an upper bound on the minimum lifting dimension required to achieve perfect accuracy. Our results on the required lifting dimension are in line with the intractability of brute-force attacks. To showcase the potential of our approach, we establish connections between our findings and existing results on algorithmic complexity. Furthermore, we extend this methodology to a data-driven context, where the Koopman representation is learned from data samples of the cryptosystems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here