Deep Learning Solution of the Eigenvalue Problem for Differential Operators

1 Jan 2021  ·  Ido Ben-Shaul, Leah Bar, Nir Sochen ·

Solving the eigenvalue problem for differential operators is a common problem in many scientific fields. Classical numerical methods rely on intricate domain discretization, and yield non-analytic or non-smooth approximations. We introduce a novel Neural Network (NN)-based solver for the eigenvalue problem of differential self-adjoint operators where the eigenpairs are learned in an unsupervised end-to-end fashion. We propose three different training procedures, for solving increasingly challenging tasks towards the general eigenvalue problem. The proposed solver is able to find the M smallest eigenpairs for a general differential operator. We demonstrate the method on the Laplacian eigenproblem which is of particular interest in image processing, computer vision, shape analysis among many other applications. Unlike other numerical methods such as finite differences, the partial derivatives of the network approximation of the eigenfunction can be analytically calculated to any order. Therefore, the proposed framework enables the solution of higher order operators and on free shape domain or even on a manifold. Non-linear operators can be investigated by this approach as well.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here