DeepTrack: Lightweight Deep Learning for Vehicle Path Prediction in Highways

Vehicle trajectory prediction is essential for enabling safety-critical intelligent transportation systems (ITS) applications used in management and operations. While there have been some promising advances in the field, there is a need for modern deep learning algorithms that allow real-time trajectory prediction on embedded IoT devices. This article presents DeepTrack, a novel deep learning algorithm customized for real-time vehicle trajectory prediction and monitoring applications in arterial management, freeway management, traffic incident management, and work zone management for high-speed incoming traffic. In contrast to previous methods, the vehicle dynamics are encoded using Temporal Convolutional Networks (TCNs) to provide more robust time prediction with less computation. DeepTrack also uses depthwise convolution, which reduces the complexity of models compared to existing approaches in terms of model size and operations. Overall, our experimental results demonstrate that DeepTrack achieves comparable accuracy to state-of-the-art trajectory prediction models but with smaller model sizes and lower computational complexity, making it more suitable for real-world deployment.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here