Degradation-Resistant Unfolding Network for Heterogeneous Image Fusion

Heterogeneous image fusion (HIF) techniques aim to enhance image quality by merging complementary information from images captured by different sensors. Among these algorithms, deep unfolding network (DUN)-based methods achieve promising performance but still suffer from two issues: they lack a degradation-resistant-oriented fusion model and struggle to adequately consider the structural properties of DUNs, making them vulnerable to degradation scenarios. In this paper, we propose a Degradation-Resistant Unfolding Network (DeRUN) for the HIF task to generate high-quality fused images even in degradation scenarios. Specifically, we introduce a novel HIF model for degradation resistance and derive its optimization procedures. Then, we incorporate the optimization unfolding process into the proposed DeRUN for end-to-end training. To ensure the robustness and efficiency of DeRUN, we employ a joint constraint strategy and a lightweight partial weight sharing module. To train DeRUN, we further propose a gradient direction-based entropy loss with powerful texture representation capacity. Extensive experiments show that DeRUN significantly outperforms existing methods on four HIF tasks, as well as downstream applications, with cheaper computational and memory costs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here