Density Estimation via Discrepancy

23 Sep 2015  ·  Kun Yang, Hao Su, Wing Hung Wang ·

Given i.i.d samples from some unknown continuous density on hyper-rectangle $[0, 1]^d$, we attempt to learn a piecewise constant function that approximates this underlying density non-parametrically. Our density estimate is defined on a binary split of $[0, 1]^d$ and built up sequentially according to discrepancy criteria; the key ingredient is to control the discrepancy adaptively in each sub-rectangle to achieve overall bound. We prove that the estimate, even though simple as it appears, preserves most of the estimation power. By exploiting its structure, it can be directly applied to some important pattern recognition tasks such as mode seeking and density landscape exploration. We demonstrate its applicability through simulations and examples.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here