Signatures of dephasing by mirror-symmetry breaking in weak-antilocalization magnetoresistance across the topological transition in Pb$_{1-x}$Sn$_{x}$Se

18 Feb 2020  ·  Alexander Kazakov, Wojciech Brzezicki, Timo Hyart, Bartłomiej Turowski, Jakub Polaczyński, Zbigniew Adamus, Marta Aleszkiewicz, Tomasz Wojciechowski, Jaroslaw Z. Domagala, Ondrej Caha, Andrei Varykhalov, Gunther Springholz, Tomasz Wojtowicz, Valentine V. Volobuev, Tomasz Dietl ·

Many conductors, including recently studied Dirac materials, show saturation of coherence length on decreasing temperature. This surprising phenomenon is assigned to external noise, residual magnetic impurities or two-level systems specific to non-crystalline solids. Here, by considering the SnTe-class of compounds as an example, we show theoretically that breaking of mirror symmetry deteriorates Berry's phase quantization, leading to additional dephasing in weak-antilocalization magnetoresistance (WAL-MR). Our experimental studies of WAL-MR corroborate these theoretical expectations in (111) Pb$_{1-x}$Sn$_x$Se thin film with Sn contents $x$ corresponding to both topological crystalline insulator and topologically trivial phases. In particular, we find the shortening of the phase coherence length in samples with intentionally broken mirror symmetry. Our results indicate that the classification of quantum transport phenomena into universality classes should encompass, in addition to time-reversal and spin-rotation invariances, spatial symmetries in specific systems.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Mesoscale and Nanoscale Physics Materials Science