Design, Implementation and Simulation of a Cloud Computing System for Enhancing Real-time Video Services by using VANET and Onboard Navigation Systems

In this paper, we propose a design for novel and experimental cloud computing systems. The proposed system aims at enhancing computational, communicational and annalistic capabilities of road navigation services by merging several independent technologies, namely vision-based embedded navigation systems, prominent Cloud Computing Systems (CCSs) and Vehicular Ad-hoc NETwork (VANET). This work presents our initial investigations by describing the design of a global generic system. The designed system has been experimented with various scenarios of video-based road services. Moreover, the associated architecture has been implemented on a small-scale simulator of an in-vehicle embedded system. The implemented architecture has been experimented in the case of a simulated road service to aid the police agency. The goal of this service is to recognize and track searched individuals and vehicles in a real-time monitoring system remotely connected to moving cars. The presented work demonstrates the potential of our system for efficiently enhancing and diversifying real-time video services in road environments.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here