Differentiable Turbulence II

25 Jul 2023  ·  Varun Shankar, Romit Maulik, Venkatasubramanian Viswanathan ·

Differentiable fluid simulators are increasingly demonstrating value as useful tools for developing data-driven models in computational fluid dynamics (CFD). Differentiable turbulence, or the end-to-end training of machine learning (ML) models embedded in CFD solution algorithms, captures both the generalization power and limited upfront cost of physics-based simulations, and the flexibility and automated training of deep learning methods. We develop a framework for integrating deep learning models into a generic finite element numerical scheme for solving the Navier-Stokes equations, applying the technique to learn a sub-grid scale closure using a multi-scale graph neural network. We demonstrate the method on several realizations of flow over a backwards-facing step, testing on both unseen Reynolds numbers and new geometry. We show that the learned closure can achieve accuracy comparable to traditional large eddy simulation on a finer grid that amounts to an equivalent speedup of 10x. As the desire and need for cheaper CFD simulations grows, we see hybrid physics-ML methods as a path forward to be exploited in the near future.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here