Diffusion-based Light Field Synthesis

1 Feb 2024  ·  Ruisheng Gao, Yutong Liu, Zeyu Xiao, Zhiwei Xiong ·

Light fields (LFs), conducive to comprehensive scene radiance recorded across angular dimensions, find wide applications in 3D reconstruction, virtual reality, and computational photography.However, the LF acquisition is inevitably time-consuming and resource-intensive due to the mainstream acquisition strategy involving manual capture or laborious software synthesis.Given such a challenge, we introduce LFdiff, a straightforward yet effective diffusion-based generative framework tailored for LF synthesis, which adopts only a single RGB image as input.LFdiff leverages disparity estimated by a monocular depth estimation network and incorporates two distinctive components: a novel condition scheme and a noise estimation network tailored for LF data.Specifically, we design a position-aware warping condition scheme, enhancing inter-view geometry learning via a robust conditional signal.We then propose DistgUnet, a disentanglement-based noise estimation network, to harness comprehensive LF representations.Extensive experiments demonstrate that LFdiff excels in synthesizing visually pleasing and disparity-controllable light fields with enhanced generalization capability.Additionally, comprehensive results affirm the broad applicability of the generated LF data, spanning applications like LF super-resolution and refocusing.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here